

Fig. 1. Perspective view of the Ni complex with atom numbering. The solvate molecules have been omitted.
with atomic numbering is shown in Fig. 1. As Ni lies on an inversion centre, the coordinating isocyanide C atoms are coplanar with Ni , and the arrangement is approximately square-planar as follows from the $\mathrm{C}-\mathrm{Ni}-\mathrm{C}$ angle of $92.2(3)^{\circ}$. The isocyanide ligands deviate from the $\mathrm{C}-\mathrm{Ni}-\mathrm{C}$ plane, the distances of $\mathrm{N}(1)$ and $\mathrm{N}(2)$ to this plane are 0.03 (1) and 0.10 (1) $\AA$ respectively and the $\mathrm{Ni}-\mathrm{C}-\mathrm{N}$ angles are 176.0 (5) and $174.0(6)^{\circ}$ respectively. The $\mathrm{Ni}-\mathrm{C}$ distances $[1.831$ (8) and 1.839 (6) $\AA$ ], the terminal $\mathrm{N}-\mathrm{C}$ distances [1.152 (10) and $1 \cdot 157(9) \AA$ ] and the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angles [174.0 (7) and $174.3(7)^{\circ}$ ] of the isocyanide ligands are similar to those observed in $\mathrm{Ni}^{0}$ isocyanide complexes. In bis(tert-butylisocyanide)(azobenzene)nickel(0) (Dickson \& Ibers, 1972) the corresponding values are
$1.842(5), \quad 1.839(5) ; \quad 1.155(6), \quad 1 \cdot 156(6) \AA$ and 175.3 (5), 177.5 (6) ${ }^{\circ}$, and in bis(tert-butylisocyanide)( $N$-tert-butyldicyanoketenimine)nickel(0) (Yarrow, Ibers, Tatsuno \& Otsuka, 1973) the values are 1.819 (5), $\quad 1.876$ (4); $\quad 1.149(5), \quad 1.147(5) \AA \quad$ and 176.5 (4), $174.8(4)^{\circ}$. The observed terminal $\mathrm{C}-\mathrm{N}$ bond lengths lie in the range expected for $\mathrm{C}-\mathrm{N}$ triple bonds. The $\mathrm{N}(1)-\mathrm{C}(11)$ and $\mathrm{N}(2)-\mathrm{C}(21)$ distances are 1.411 (9) and 1.396 (10) $\AA$ respectively and these are shorter than the corresponding distances in the $\mathrm{Ni}^{\mathbf{0}}$ complexes, where these distances involve $\mathrm{C}\left(s p^{3}\right)$ atoms. The angles between the phenyl rings and the $\mathrm{C}(1)$ -$\mathrm{Ni}-\mathrm{C}(2)$ plane are $57.0(4)\left(\mathrm{C}_{11} \rightarrow \mathrm{C}_{16}\right)$ and $71.9(4)^{\circ}$ $\left(C_{21} \rightarrow C_{26}\right)$ respectively. The angle between the phenyl rings is $67.3(4)^{\circ}$.

## References

Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Dickson, R. S. \& Ibers, J. A. (1972). J. Am. Chem. Soc. 94, 2988-2993.
Drenth, W. \& Nolte, R. J. M. (1979). Acc. Chem. Res. 12, 30-35.
Millich, F. (1980). Macromol. Rev. 15, 207-253.
Nolte, R. J. M., Zwikker, J. W., Reedij, J. \& Drenth, W. (1978). J. Mol. Catal. 4, 423-426.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for crystal structure solution. Univ. of Göttingen, Federal Republic of Germany.
Spek, A. L. (1982). The EUCLID Package. In Computational Crystallography, edited by D. SAYRE, p. 528. Oxford: Clarendon Press.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Yarrow, D. J., Ibers, J. A., Tatsuno, Y. \& Otsuka, S. (1973). J. Am. Chem. Soc. 95, 8590-8597.

# A Tetracarbonyl $\left(\eta^{4}\right.$-dienone)chromium Complex 

By Stephen F. Pavkovic and Eugene J. Zaluzec<br>Department of Chemistry, Loyola University of Chicago, Chicago, Illinois 60626, USA

(Received 5 May 1988; accepted 11 August 1988)

> Abstract. Tetracarbonyl[ 1-3,9a- $\eta$-(2,3-diethyl-4a,9a-dihydro-1-methoxy-4a, 9 -dimethyl-4 H -carbazol-4-one)]chromium $(0), \quad\left[\mathrm{Cr}(\mathrm{CO})_{4}\left(\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2}\right)\right], \quad M_{r}=461.4$, monoclinic, $P 2_{1} / c, a=15.2045$ (7), $b=8.4622$ (3), $c=17.3682$ (8) $\AA, \beta=92.28$ (1) ${ }^{\circ}, V=2232.9$ (2) $\AA^{3}$, $Z=4, D_{x}=1.37 \mathrm{~g} \mathrm{~cm}^{-3}$, Ni-filtered $\mathrm{Cu} K \alpha$ radiation, $\lambda=1.5418 \AA, \quad \mu=45.5 \mathrm{~cm}^{-1}, \quad F(000)=960, \quad T=$ 0108-2701/89/010018-04\$03.00

295 K. Refinement of 284 parameters based on 2472 observed intensities gave a final $R=0.055$. The diene is $\pi$-bonded to Cr in this $\left[\mathrm{Cr}\right.$ (dienone)(CO) $\left.{ }_{4}\right]$ complex, and angles and average bond lengths from Cr to carbonyl C atoms trans to the diene are $100.9(2)^{\circ}$ and 1.842 (6) $\AA$, and to the cis-carbonyl C atoms are 155.4 (2) ${ }^{\circ}$ and 1.886 (7) $\AA$. This is the first structure
© 1989 International Union of Crystallography
reported for a metal complex isolated from annulation reactions of Cr indolyl carbene complexes with acetylenes.

Introduction. The Aspidosperma alkaloids are the largest group of indole alkaloids and they have been the target of numerous synthetic efforts (Wulff, 1988; Saxton, 1986). Both the Aspidosperma and Strychnos families display the common structural feature of a six-membered carbocyclic ring fused at the 2,3 -positions of the indole nucleus. A new synthesis of an indole-fused six-membered ring has resulted from reaction of a chromium carbene complex with diethylacetylene (Bauta, Wulff, Pavkovic \& Zaluzec, 1988). The reaction also produced the chromium complex whose structure is reported here. This compound showed some evidence of being a vinyl ketene intermediate. The ${ }^{13} \mathrm{C}$ NMR solution spectrum was inconclusive in this regard, but did reveal equivalent carbonyl groups. The structure determination was undertaken to establish the identity of the solid and to use that information to gain a better understanding of the reaction.

Experimental. A $0.35 \times 0.40 \times 0.35 \mathrm{~mm}$ specimen was selected from good quality orange prismatic crystals (from ether) provided by Professor W. D. Wulff and W. E. Bauta (University of Chicago); general solubility precluded density measurements. A modified four-circle Picker diffractometer was used. Lattice parameters were determined from scans of $\pm 2 \theta=\left|60-70^{\circ}\right|$ for 24 reflections, and relative absorption corrections varying from 1.0 to 0.70 were derived from $\varphi$ scans at $\chi=90^{\circ}$. Intensity data were collected by the $\theta-2 \theta$ method to $[(\sin \theta) / \lambda]_{\max }=0.56 \AA^{-1}$ for $h-17 \rightarrow 17, k 0 \rightarrow 9, l 0 \rightarrow 19$ on 4473 reflections ( $R_{\text {int }}=0.024$ ) which contained 3322 unique and 2472 observed intensities $[F>3 \sigma(F)]$; four standard reflections showed $1 \%$ intensity variation over the data-collection period. The structure solution


Fig. 1. ORTEP (Johnson, 1976) diagram of the compound. For sake of clearness the H atoms have been omitted from the diagram, and atoms $C(7)$ and $N$ [between $C(10)$ and $C(23)]$ are unlabeled. Thermal ellipsoids are scaled to enclose $30 \%$ probability.

Table 1. Final atomic coordinates ( $\times 10^{4}, \times 10^{5}$ for Cr ) and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right.$, $\times 10^{4}$ for Cr )

|  | $U_{\mathrm{eq}}=\left(U_{11}+U_{22}+U_{33}\right) / 3$. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\boldsymbol{x}$ | $y$ | $z$ | $U_{\text {eq }}$ |
| Cr | 18812 (4) | [7447 (8) | 12164 (3) | 429 (7) |
| O(1) | 35 (2) | 1375 (4) | 532 (2) | 80 (4) |
| O(2) | 2212 (2) | -754 (4) | 36 (2) | 83 (4) |
| O(3) | 1109 (3) | -140 (4) | 2477 (2) | 96 (4) |
| $\mathrm{O}(4)$ | 3561 (3) | 287 (5) | 1883 (3) | 118 (7) |
| O(5) | 1619 (2) | 4057 (3) | -172 (1) | 48 (3) |
| O(6) | 3287 (2) | 3911 (4) | 2710 (2) | 60 (4) |
| N | 3545 (2) | 3263 (4) | 147 (2) | 43 (4) |
| C(1) | 729 (3) | 1590 (4) | 781 (2) | 51 (4) |
| C(2) | 2080 (3) | 205 (6) | 490 (3) | 55 (5) |
| C(3) | 1404 (3) | 559 (5) | 1981 (2) | 61 (5) |
| C(4) | 2961 (4) | 958 (6) | 1630 (3) | 64 (6) |
| C(5) | 2917 (3) | 4012 (5) | 2080 (2) | 46 (5) |
| C(6) | 1945 (3) | 3921 (5) | 1964 (2) | 43 (4) |
| C(7) | 1543 (2) | 4245 (4) | 1233 (2) | 38 (3) |
| C(8) | 2035 (2) | 3984 (5) | 551 (2) | 40 (4) |
| C(9) | 2934 (3) | 3748 (5) | 649 (2) | 38 (4) |
| C(10) | 3420 (3) | 4402 (5) | 1362 (2) | 37 (4) |
| C(11) | 4312 (3) | 3691 (6) | 1288 (3) | 44 (5) |
| C(12) | 5042 (3) | 3635 (7) | 1786 (3) | 66 (7) |
| C(13) | 5797 (3) | 2923 (8) | 1531 (4) | 84 (9) |
| C(14) | 5836 (4) | 2312 (8) | 819 (4) | 78 (8) |
| C(15) | 5118 (3) | 2368 (7) | 295 (3) | 68 (7) |
| C(16) | 4363 (3) | 3074 (6) | 552 (3) | 48 (5) |
| C(17) | 1459 (3) | 4018 (5) | 2707 (2) | 58 (5) |
| C(18) | 1529 (4) | 5594 (7) | 3120 (3) | 96 (8) |
| C(19) | 612 (2) | 4933 (4) | 1130 (2) | 51 (4) |
| C(20) | 608 (3) | 6710 (5) | 1179 (3) | 78 (6) |
| C(21) | 1815 (3) | 5469 (5) | -576 (2) | 63 (5) |
| C(22) | 3472 (3) | 6202 (6) | 1311 (3) | 56 (5) |
| C(23) | 3373 (3) | 2572 (6) | -611(2) | 63 (6) |

utilized the SHELX76 computer program (Sheldrick, 1976), Patterson and Fourier synthesis methods, atomic scattering factors from International Tables for $X$-ray Crystallography (1974), refinement on $|F|$ with $w=0.87 /\left[\sigma^{2}(F)+0.0029 F^{2}\right]$, calculated H -atom positions with group isotropic temperature factors refined for aryl and methylene $H$, and refinement of 284 parameters. The final results were $R=0.055, w R$ $=0.061, S=0.92,(\Delta / \sigma)_{\max }<0.10$ and $\Delta \rho$ max. $/ \mathrm{min}$. of $0.38 / 0.27$ e $\AA^{-3}$.

Discussion. The structure of this $\left[\mathrm{Cr}(\right.$ dienone $\left.)(\mathrm{CO})_{4}\right]$ complex, compound (I), is shown in Fig. 1. Atomic coordinates and geometrical parameters are listed in Tables 1 and 2.* The $C(6) \cdots C(9)$ atoms from the diene portion of the ligand are $\pi$-bonded to Cr at two adjacent coordination sites trans to carbonyls $\mathrm{C}(2)$ and $\mathrm{C}(3)$. In turn these carbonyl C atoms have shorter bond lengths to Cr than do the mutually cis carbonyls $\mathrm{C}(1)$ and $\mathrm{C}(4)$. Such differences in bond lengths from Cr to cis- and trans-carbonyl C are common features in $[\mathrm{Cr}$ (bidentate ligand)(CO) ${ }_{4}$ ] complexes (Brown, 1978). Clearly the molecule shows fluxional behavior in solution (see above).

[^0]Table 2. Interatomic distances ( $\AA$ ), angles $\left({ }^{\circ}\right)$ and selected torsion angles $\left({ }^{\circ}\right)$

The $\mathbf{C}(6) \cdots \mathrm{C}(9)$ segment of the ligand $\pi$-bonded to Cr has several interesting features. This group of atoms is quite planar and the average deviation from the least-squares best-fit plane passing through them is only 0.04 (1) $\AA$. Their plane is almost perpendicular [86.8 (1) ${ }^{\circ}$ ] to the $\mathrm{C}(2)-\mathrm{Cr}-\mathrm{C}(3)$ plane. This group of atoms is also part of a larger conjugated system which extends to $C(5)$ and $O(6)$. We believe this to be the first example reported for a $\left[\mathrm{Cr}(\right.$ diene $\left.)(\mathrm{CO})_{4}\right]$ complex in which the $\pi$-bonded diene is a component of an extended conjugated chain, and where that extension does not participate in coordination to the metal.

The bond angles from Cr to trans- and cis-carbonyl C atoms of 100.9 (2) and 155.4 (2) ${ }^{\circ}$ differ markedly from the 90 and $180^{\circ}$ of a regular octahedron. In this regard compound (I) is the most distorted six-coordinate $\left[\mathrm{Cr}(\right.$ diene $\left.)(\mathrm{CO})_{4}\right]$ reported to date. The previously noted largest deviation from $180^{\circ}$ is the angle of $167^{\circ}$ found in $\left[\operatorname{Cr}\left(N, N, N^{\prime}, N^{\prime}\right.\right.$-tetramethylethylenediamine)$(\mathrm{CO})_{4}$ ] (Kruger, Gafner, De Villiers, Raubenheimer \& Swanepoel, 1980).


Fig. 2. ORTEP (Johnson, 1976) diagram viewed down the $\mathbf{C}(10)-\mathbf{C}(22)$ bond, showing the rotated aspect of the ligand relative to the $\mathbf{C}(2)-\mathrm{Cr}-\mathrm{C}(3)$ plane of atoms. Thermal ellipsoids are scaled to enclose $30 \%$ probability.

There is good evidence for electron delocalization in the dienone region of the ligand. The three bonds linking $C(6)$ through $C(9)$ have an average bond length of 1.413 ( 9 ) $\AA$ and corresponding bond order of 1.52 (Pauling, 1960) symptomatic of aromatic character. Similar ring $\mathrm{C}-\mathrm{C}$ distances of 1.417 (3) and 1.423 (1) $\AA$ are found in the arene complexes [ $\mathrm{Cr}($ benzene) ${ }_{2}$ ], compound (II) (Keulen \& Jellinek, 1966), and $\left[\mathrm{Cr}(\right.$ benzene $\left.)(\mathrm{CO})_{3}\right]$, compound (III) (Rees \& Coppens, 1973). In contrast, the olefinic complexes [ Cr ('Dewarbenzene $\left.\left.{ }^{3}\right)(\mathrm{CO})_{4}\right]$ (Huttner \& Mills, 1971) and $[\mathrm{Cr}(7,7-$ dimethoxynorborn-2-ene)(CO) ${ }_{4}$ ] (Brotherton, Wege, White \& Maslen, 1974), have C-C distances of 1.36 (1) and 1.38 (1) $\AA$. Aromatic character is also suggested for this region of (I) by its $\mathrm{Cr}-\pi$-plane normal of 1.803 (1) $\AA$ which is to be compared with normals of 1.606 (1) and $1.73 \AA$ reported for (II) and (III) (Muetterties, Bleeke, Wucherer \& Albright, 1982). Delocalization in (I) may relax Cr -ligand alignment conditions and cause the slight turning of the ligand so that the central $\mathrm{C}(7)-\mathrm{C}(8)$ bond of the $\pi$-bonded segment appears inclined $21^{\circ}$ to the $\mathrm{C}(2)-\mathrm{Cr}-\mathrm{C}(3)$ plane. This is shown more clearly in Fig. 2.

We thank the National Science Foundation for financial support.

## References

Bauta, W. E., Wulff, W. D., Pavkovic, S. F. \& Zaluzec, E. J. (1988). J. Am. Chem. Soc. 110 . In the press.
brotherton, P. D., Wege, D., White, A. H. \& Maslen, E. (1974). J. Chem. Soc. Dalton Trans. 17, 1876-1878.

Brown, I. D. (1978). Coord. Chem. Rev. 26, 161-206.
Huttner, G. \& Mills, O. S. (1971). J. Organomet. Chem. 29, 275-282.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99, 149. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Keulen, E. \& Jellinek, F. (1966). J. Organomet. Chem. 5, 490-492.
Kruger, G. J., Gafner, G., De Villiers, J. P. R., Raubenheimer, H. G. \& Swanepoel, H. (1980). J. Organomet. Chem. 187, 333-340.
Muetterties, E. L., Bleeke, J. R., Wucherer, E. J. \& Albright, T. A. (1982). Chem. Rev. 82, 499-525.

Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., p. 239. Ithaca: Cornell Univ. Press.

Rees, B. \& Coppens, P. (1973). Acta Cryst. B29, 2516-2528.
Saxton, J. E. (1986). Nat. Prod. Rep. 3, 353-394.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Wulff, W. D. (1988). In Advances in Metal-Organic Chemistry, Vol. 1, edited by L. S. Liebeskind. Greenwich, CT: JAI Press Inc.

Acta Cryst. (1989). C45, 21-23

# Structure of Diaqua[ $N$-(o-carboxyphenyl)iminodiacetato]chromium(III) Trihydrate 

By K. Swaminathan and U. C. Sinha*<br>Physics Department, Indian Institute of Technology, Powai, Bombay 400076, India<br>C. Chatterjee<br>Chemistry Department, Indian Institute of Technology, Powai, Bombay 400076, India<br>and V. S. Yadava and V. M. Padmanabhan<br>Neutron Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay 400085, India

(Received 31 May 1988; accepted 9 August 1988)


#### Abstract

Cr}\left(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{NO}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] .3 \mathrm{H}_{2} \mathrm{O}, M_{r}=392 \cdot 26\), orthorhombic, $P b c a, a=14.2206$ (7), $b=17.9251$ (7), $c=12.3309(8) \AA, \quad V=3143.22 \AA^{3}, \quad Z=8, \quad D_{x}=$ 1.657, $D_{m}($ by flotation $)=1.655 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Cu} K \alpha)=$ $1.5406 \AA$, Ni filter, $\mu=68.45 \mathrm{~cm}^{-1}, F(000)=1600$, $T=295 \mathrm{~K}, R=0.0479, w R=0.0513$ for 1409 observed reflections. The two water O atoms, the N atom and the three carboxyl O atoms of the quadridentate amino polycarboxylate ligand [ N -(o-carboxyphenyl)iminodiacetic acid (cpida)] give distorted octahedral coordination around Cr . The $\mathrm{Cr}-\mathrm{O}$ distances for the coordinated water molecules are nearly equal. The carboxyl $\mathrm{O}(2)-\mathrm{Cr}$ distance is shorter than the other two glycinato $\mathrm{O}-\mathrm{Cr}$ distances. The phenyl ring makes a dihedral angle of 109.5 (4) ${ }^{\circ}$ with the equatorial coordination plane. The structure is stabilized by a network of hydrogen bonds involving the water molecules.


Introduction. Linear quadridentate amino polycarboxylic acids can wrap around metal ions in octahedral coordination in a variety of ways resulting in the formation of $\alpha$-cis, $\beta$-cis and $\beta$ - $\beta$ trans configurations. In contrast to the extensive stereochemical studies involving linear amino polycarboxylic metal complexes, little study has been undertaken of complexes with tripod ligands. The amino polycarboxylate ligands have

[^1]0108-2701/89/010021-03\$03.00
donor groups similar to the more common amino acid residues and hence the studies of these complexes are of significance in comparison to amino acid complexes. The title complex can have two possible structures, Fig. 1. The structure determination was undertaken to establish the details of its coordination.

Experimental. The complex was synthesized by the literature method (Tomita, Kyuno \& Tsuchia, 1969):
$\left[\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{aq}}+(\mathrm{cpida}) \Delta\left[\mathrm{Cr}(\right.$ cpida $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$.
Recrystallization from water gave purple crystals. Intensity data (crystal dimensions $0.08 \times 0.16 \times$ 0.6 mm ) were collected on an Enraf-Nonius CAD-4 diffractometer, Ni -filtered $\mathrm{Cu} K \alpha$ radiation, $\omega-2 \theta$ scan.


Fig. 1. Two possible structures.
(C) 1989 International Union of Crystallography


[^0]:    * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51335 (18 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]:    * To whom correspondence should be addressed.

